EnsembleHMD: Accurate Hardware Malware Detectors with Specialized Ensemble Classifiers
نویسندگان
چکیده
Hardware-based malware detectors (HMDs) are a promising new approach to defend against malware. HMDs collect low-level architectural features and use them to classify malware from normal programs. With simple hardware support, HMDs can be always on, operating as a first line of defense that prioritizes the application of more expensive and more accurate software-detector. In this paper, our goal is to increase the accuracy of HMDs, to improve detection, and reduce overhead. We use specialized detectors targeted towards a specific type of malware to improve the detection of each type. Next, we use ensemble learning techniques to improve the overall accuracy by combining detectors. We explore detectors based on logistic regression (LR) and neural networks (NN). The proposed detectors reduce the false-positive rate by more than half compared to using a single detector, while increasing their sensitivity. We develop metrics to estimate detection overhead; the proposed detectors achieve more than 16.6x overhead reduction during online detection compared to an idealized software-only detector, with an 8x improvement in relative detection time. NN detectors outperform LR detectors in accuracy, overhead (by 40%), and time-to-detection of the hardware component (by 5x). Finally, we characterize the hardware complexity by extending an open-core and synthesizing it on an FPGA platform, showing that the overhead
منابع مشابه
Ensemble Learning for Low-Level Hardware-Supported Malware Detection
Recent work demonstrated hardware-based online malware detection using only low-level features. This detector is envisioned as a first line of defense that prioritizes the application of more expensive and more accurate software detectors. Critical to such a framework is the detection performance of the hardware detector. In this paper, we explore the use of both specialized detectors and ensem...
متن کاملWhen a Tree Falls: Using Diversity in Ensemble Classifiers to Identify Evasion in Malware Detectors
Machine learning classifiers are a vital component of modern malware and intrusion detection systems. However, past studies have shown that classifier based detection systems are susceptible to evasion attacks in practice. Improving the evasion resistance of learning based systems is an open problem. To address this, we introduce a novel method for identifying the observations on which an ensem...
متن کاملMalware Detection using Classification of Variable-Length Sequences
In this paper, a novel method based on the graph is proposed to classify the sequence of variable length as feature extraction. The proposed method overcomes the problems of the traditional graph with variable length of data, without fixing length of sequences, by determining the most frequent instructions and insertion the rest of instructions on the set of “other”, save speed and memory. Acco...
متن کاملHeNet: A Deep Learning Approach on Intel$^\circledR$ Processor Trace for Effective Exploit Detection
This paper presents HeNet, a hierarchical ensemble neural network, applied to classify hardware-generated control flow traces for malware detection. Deep learning-based malware detection has so far focused on analyzing executable files and runtime API calls. Static code analysis approaches face challenges due to obfuscated code and adversarial perturbations. Behavioral data collected during exe...
متن کاملA Pre-Trained Ensemble Model for Breast Cancer Grade Detection Based on Small Datasets
Background and Purpose: Nowadays, breast cancer is reported as one of the most common cancers amongst women. Early detection of the cancer type is essential to aid in informing subsequent treatments. The newest proposed breast cancer detectors are based on deep learning. Most of these works focus on large-datasets and are not developed for small datasets. Although the large datasets might lead ...
متن کامل